最新新闻
我要投稿
联系电话:027-87592219/20/21转188
新闻投稿:tb@e-works.net.cn
您所在的位置:首页 > 智库 > 智能决策

从商业智能到智能商业,AI如何帮助我们做商业决策?

发布时间:2017-08-09 作者:佚名  来源:数据分析网
关键字:商业智能 智能商业 
历史上看,OR、BI、AI似乎都没能很好地建立起高度可依赖的商业决策支持系统。借助于AI领域的最新进展,三者结合催生了新的商业决策支持模式,即Intelligent Business。
    Business Intelligence(BI)这么多年来一直被翻译为“商业智能”,我们可能一直都翻译错了,正确的翻译也许应该是“商业情报”。而真正的智能商业时代才刚刚开始。
 
    虽然目前AI的整体发展水平大约相当于六岁孩子的智商,但是这是一个严重“偏科”的神童,如果我们能正确地定义问题,这个神童能在商业决策上为我们提供巨大的帮助。
 
    历史上看,OR(运筹学)、BI、AI似乎都没能很好地建立起高度可依赖的商业决策支持系统。借助于AI领域的最新进展,三者结合催生了新的商业决策支持模式,即Intelligent  Business,这是真正的智能商业。
 
    我们尝试给出智能商业的框架性定义:AI增强的决策支持系统(Decision Support System,DSS),服务于企业中需要决策的各级人员,应该具备实时、闭环、自动进化、自动识别问题、全局优化等特征,目的在于提高企业决策的效率和质量,增强企业在数字经济时代的竞争力。
 
    智能商业领域努力的终极目标——为构建一个支持决策的优化模型需要做出关于决策变量的决策。AI的应用可能使优化模型构建和演化变得自动化,也就是说,模型本身也成为了优化的决策变量,这也意味着基于机器学习的模型的自动适应和自动演化成为可能。这样的机制才是真正的Intelligent Business,我们努力的终极目标。
 
    什么样的企业会成为成功的智能企业:做到算法、数据和场景三者的完美融合。
 
    人类欲望的驱动会带来更多的需求和相应更多新的工作机会,与此同时,AI及脑机接口等新技术在教育上的应用会帮助未来的劳动力快速适应新的工作机会。技术的改进会给我们人类带来更多的福祉,而不是灾难。
 
    星河互联CEO傅淼详细阐述了智能商业的相关问题——《从商业智能到智能商业》。
 
    1、BI的起源
 
    大家知道AI真正热起来是过去两年的事,得到了产业界和投资界的广泛认可。在此之前AI在学术界起起落落数十载,始终没有得到产业界的真正关注和认可。但是反过来,Business Intelligence,也就是BI,实际上已经出现了很多年,并且在商业上也获得了相当大的成功。
 
    那么问题来了,为什么大家一直不把Business Intelligence的成功视为Artificial Intelligence的成功呢?为什么大家要歧视Business Intelligence里的这个Intelligence呢?我最近一直在思考这个问题,然后有个大胆的结论:也许这二十年来,我们一直都翻译错了。
 
    大家知道,Intelligence在英文里有两个含义,一个是智能,一个是情报的意思。那么实际上Business Intelligence这个词可能就是商业情报的意思,只不过这么多年来我们一直想当然地把它翻译为商业智能。
 
    为了验证这个想法,我研究了一下BI的历史。1958年IBM的研究员Hans Peter Luhn首次提出了BI的定义:“BI是这样一种能力,这种能力可以理解已知事实之间的相互关系,以帮助用户采取正确的措施,达成既定目标。”可以看出,BI的作用是帮助用户对数据进行挖掘,发现对决策有价值的信息,其实就是商业情报。
 
    2、客观存在着更适合计算机决策的问题
    从商业智能到智能商业,AI如何帮助我们做商业决策?-数据分析网
 
    下面我们回到对人工智能的讨论。AI等于几岁孩子的智力?这是一个很难回答的问题。最近我找到一篇论文《人工智能的智商和智能等级划分研究》,是几位中国学者的研究成果,我认为是在这个问题上分析得比较完备的一篇文章,感兴趣的同学可以找来看看。此文把不同年龄的人类的智商和不同的AI平台做了比较,结论是代表AI最高水平的谷歌平台综合来看和人类6岁智商是类似的。
 
    因此,业界通常认为,目前AI在商业领域的应用,主要是在一些以成年人类的标准来看,不需要太高智能的场景进行自动化替代或人机交互的体验升级。
 
    但是,我们对这个问题有不同的看法。我们认为只要正确地定义问题,目前AI的发展程度已经可以在商业决策支持领域发挥重要的作用。
 
    为什么我们认为6岁孩子的智力能够帮助我们更好地做商业决策呢?注意我们上面提到的结论是,AI目前的水平“综合”来看和人类6岁的智商类似。但是,很明显,这个6岁的孩子是个“偏科”的神童,至少他在围棋上已经可以战胜人类最伟大的棋手。
 
    当然,纯粹是出于好奇,我也研究了一下6岁孩子在围棋上能达到的最高水平,到目前为止是业余4段,这是绝大多数围棋爱好者一辈子都达不到的,所以不要小看六岁孩子的智力,在某些特定的领域经过系统的训练可以达到以成年人的标准衡量也非常高的水平。当然,AlphaGo的水准要远远高于业余四段了,“棋圣”聂卫平认为AlphaGo的棋力至少已经达到专业二十段。
   
    所以,目前AI在人类的某些高级智能活动领域已经可以达到远远超过成年人类的最高水平。关键是,我们如何准确的找到这些AI可以充分发挥其能力的问题?我们不妨还是用围棋作为一个例子来定义这类问题的一个可能的方向。
 
    二十年前IBM深蓝就战胜了国际象棋大师卡斯帕罗夫,大家震惊之余,并没有觉得很可怕,可是为什么AlphaGo战胜围棋棋手就很可怕呢?因为国际象棋只有8X8=64个格子,利用超级计算机可以用穷举法精确求解,这种情况按现在的标准不叫AI。但是围棋有19X19=361个节点,其计算复杂度远远超过国际象棋,目前最高级的超级计算机也远远无法通过穷尽法精确求解。
 
    大家知道,人类大脑的数值运算是很差的,但是在处理很多问题上通过直觉而不是运算的能力可以达到相当高的水准。比如说围棋这件事情,19×19格已经远远超出人类大脑的计算力,在这种情况下人要靠直觉、经验和想象力下围棋,这是围棋的魅力所在。现在的AI可以模拟人类处理类似问题的方式近似地求解,但是比人类更精确,速度更快,这才是人们觉得可怕的地方。
 
    因此,我们可以尝试定义这样一类问题:客观上它的正确解是存在的而且理论上是可以通过数值计算精确求解的,但是它的计算复杂度已经远远超越了计算机的算力,所以无论是人还是计算机,都是要用近似方法求解,只不过计算机可以比人做得更精确。
 
    如果我们在商业决策领域能够找到符合这个条件的一些问题,AI在帮助用户更好地解决这类问题上是可以发挥重要作用的。
 
    当然,这只是“正确”地定义AI可以发挥重要作用的商业决策问题的一个粗浅的尝试。随着我们不断努力,我相信我们会找到更多的定义这类问题的方法,也就是说,会找到更多的AI可以大显身手的商业决策问题。
 
    3、商业决策支持系统的几种尝试
 
    自从计算机诞生以后,人类就试图借助其强大的数值计算能力建设一个可依赖的决策支持系统(Decision Support System,DSS),让我们来回顾一下这个领域的发展历史。
 
    (1)运筹学(Operations Research,OR)
 
    首先从运筹学来看,商业决策的目标是追求最大化收益。商业决策绝大多数都是微观经济层面上的决策,微观经济学上最核心的假设是所有的人,当然包括法人都是理性的经济人,其决策的目标就是追求经济利益最大化。从OR的角度看,商业决策的过程就是最优解搜索的过程。
 
    OR大家知道,在40年代美军二战军事后勤领域首先出现,已经过了70年了。在这70年内OR发展的很成熟,在很多领域都发挥了巨大的作用。其中有这样一个非常传奇的公司,以OR为核心技术,取得了相当大的商业成功。这家就是i2 Technologies,我跟这家公司也非常有缘。
 
    我个人的教育背景比较复杂,在清华上学的时候学的是柔性制造和工业机器人,去美国后先是学工业工程学,主要就是OR这套东西,后来又转到计算机专业。我找工作的时候惊喜地发现这家公司可以把我三个专业完美结合在一起,就义无反顾地加入了,并且成为我唯一以雇员身份服务过的公司。
 
    这家公司依托于OR理念首先提出了智能化供应链的理念,并形成了一套强大的产品,借助这个理念和这套产品征服了全球财富500强中的约400强,其中包括国内的联想和华为。这家公司的市值在2000年最高达到了500亿美金,并且以93亿美金的天价收购了Aspect,是当时软件史上最大的并购。
 
    2009年i2以只有3亿美金的价格卖给另外一家公司JDA,虽然相关的产品仍然在服务客户,但是作为软件史上的一代传奇就此落幕。
 
    为什么基于OR的i2没能延续其商业上的巨大成功?
 
    当然原因有很多,但是在底层的产品逻辑层面上,我个人反思,可能有两个原因。一个是局部优化。学过OR的都知道,运筹学里优化最大的敌人就是不小心陷入局部最优解。即使在算法层面求得全局的最优解,如果你所依托的数据都是内部数据的话,本质上还是局部的优化。
 
    第二个是静态模型问题。作为一个优化模型的构建,有几件事情要做:(1)要选择决策变量;(2)要对目标函数的形式进行决策,并对目标函数里的参数进行设定;(3)要对约束条件的形式进行决策,并对约束条件里参数进行设定。
 
    这些都选择好了以后才能形成可用的模型,在上一代的OR系统里面,这些都需要很多专家来参与,最后设定好这个模型,一旦设定以后就不会轻易更改,这就是一个相对静态的模型。但是实际上,我们的产业环境是飞速变化的,一个静态模型很难准确来反映瞬息万变的外部环境。
 
    (2)商业智能(Business Intelligence,BI)
 
从商业智能到智能商业,AI如何帮助我们做商业决策?-数据分析网
 
    再来看BI,我们暂且还把它叫做商业智能。作为DSS领域的一个重要分支,BI的价值也得到了市场认可。Gartner的报告显示,到2010年的时候,BI的使用率达到30%,67%的领先企业运用了BI。2017年全球市场预计可以达到183亿美金。这已经是一个相当大的市场规模,我们完全可以认为BI取得了比较大的商业成就。但是增长已经非常乏力,预计未来几年只有7.6%的年化增长率。
 
    (3)人工智能(Artificial Intelligence,AI)
 
    最后再看AI在决策支持系统领域的应用。过去几十年AI在学术界几起几落,直到过去两年才真正走进产业界,算是一个“大器晚成”的“神童”。之前几十年里AI在实用层面有限的成功算是在决策支持系统的运用,也就是专家系统(Expert System)。专家系统经历了很多年的发展,也解决了一些问题,但是整体上很难算是一个大的成功。这里面有几方面的原因,主要包括:
 
    知识表达方式单一,主要依赖启发式规则,以及不支持大规模数值计算是专家系统的内在缺陷。
 
    知识库的完备性和规模、知识获取的难度、覆盖面等,是决定专家系统成功的决定性因素。在互联网普及之前,很难把某个行业内足够的数据抽取出来,构建有效的知识库。
 
    推理机对特定领域经验的依赖很强,通用性不好。
 
    4、新一代的商业决策支持系统:智能商业
 
    总结一下,历史上OR、BI和AI在DSS领域的应用都各自取得了不同程度的成就,但是总体来看,距建立起高度可依赖的商业决策支持系统还有不小的距离。
 
    那么基于AI在过去几年的重大突破, 并和OR、BI结合是否可以催生新的商业决策模式呢?我们把这个新的模式称为智能商业,Intelligent Business,这是真正的智能,而不仅仅是商业情报。
 
    (1)智能商业的定义
 
    我们试图给智能商业一个定义。大家都知道到目前为止AI本身都没有一个业界公认的标准。在这里我们只是试图给智能商业一个框架性定义,为后面的讨论做一个基础。我们认为智能商业是AI增强的决策支持系统,服务于企业中需要决策的各级人员,应该具备实时、闭环、自动进化、全局优化的特征,以及自动识别问题的能力,目的在于提高企业决策的效率和质量,增强企业在数字经济时代的竞争力。
 

2
本文来源于互联网,e-works本着传播知识、有益学习和研究的目的进行的转载,为网友免费提供,并以尽力标明作者与出处,如有著作权人或出版方提出异议,本站将立即删除。如果您对文章转载有任何疑问请告之我们,以便我们及时纠正。联系方式:editor@e-works.net.cn tel:027-87592219/20/21。
相关资料推荐